自動(dòng)纖維鋪放技術(shù)是飛機(jī)復(fù)合材料構(gòu)件自動(dòng)化成型的關(guān)鍵制造技術(shù)之一,其又可細(xì)分為自動(dòng)纖維絲鋪放技術(shù)和自動(dòng)纖維帶鋪放技術(shù)。前者適用于平面型或低曲率的曲面型,或者說(shuō)準(zhǔn)平面型復(fù)合材料構(gòu)件的鋪層制造;后者綜合了自動(dòng)纖維纏繞與自動(dòng)纖維帶鋪放兩者的優(yōu)點(diǎn),可實(shí)現(xiàn)復(fù)雜曲面型復(fù)合材料構(gòu)件的鋪層制造。
自動(dòng)纖維鋪放技術(shù)加工原料通常為碳纖維單向增強(qiáng)樹(shù)脂基預(yù)浸絲或預(yù)浸帶。用于預(yù)浸絲或預(yù)浸帶的樹(shù)脂根據(jù)其熱行為不同,又分為熱固性樹(shù)脂和熱塑性樹(shù)脂。在自動(dòng)纖維鋪放過(guò)程中,以碳纖維增強(qiáng)熱固性樹(shù)脂基預(yù)浸絲或預(yù)浸帶為加工對(duì)象,結(jié)合“熱壓罐”技術(shù)來(lái)生產(chǎn)飛機(jī)復(fù)合材料構(gòu)件以廣泛應(yīng)用于飛機(jī)制造領(lǐng)域。而以碳纖維增強(qiáng)熱塑性樹(shù)脂基預(yù)浸絲或預(yù)浸帶為加工對(duì)象,結(jié)合“原位固化”技術(shù)來(lái)生產(chǎn)飛機(jī)復(fù)合材料構(gòu)件是飛機(jī)制造業(yè)一個(gè)新的發(fā)展趨勢(shì),據(jù)文獻(xiàn)報(bào)道,已應(yīng)用到空客A380和A350中[2]。除了熱塑性樹(shù)脂具有良好的焊接性、抗沖擊韌性、可循環(huán)性、抗化學(xué)腐蝕性以及近乎無(wú)限的保質(zhì)期等優(yōu)點(diǎn)外,“原位固化”技術(shù)與“熱壓罐”技術(shù)相比,還具有不受加工場(chǎng)地、零件大小和形狀的限制等優(yōu)點(diǎn)。
但目前據(jù)文獻(xiàn)報(bào)道,“原位固化”成型技術(shù)加工的鋪層層間強(qiáng)度為高壓固化成型加工的鋪層強(qiáng)度的89%~97%[3]。如何消除近10% 的差距,將是熱塑性復(fù)合材料纖維鋪放技術(shù)成功應(yīng)用到實(shí)際生產(chǎn)當(dāng)中的最大障礙。因此,有必要對(duì)熱塑性復(fù)合材料纖維鋪放技術(shù)中涉及的關(guān)鍵技術(shù)進(jìn)行深入研究。
加熱工藝研究
在自動(dòng)纖維鋪放過(guò)程中,為提高鋪放效率,通常設(shè)置預(yù)加熱及主加熱2個(gè)加熱環(huán)節(jié)。在這2個(gè)環(huán)節(jié)中,都會(huì)涉及到選擇熱源、建立加熱模型及確定加熱溫度三方面的問(wèn)題。圖1所示為纖維鋪放工藝簡(jiǎn)圖。
目前,應(yīng)用在自動(dòng)纖維鋪放中的熱源主要有激光熱源、紅外線熱源和高溫氣體熱源3種。選擇熱源時(shí),針對(duì)不同的加工原料及結(jié)合具體的應(yīng)用場(chǎng)合,需對(duì)所選熱源的加熱溫度(或加熱功率),可連續(xù)加熱時(shí)間,加熱溫度是否可控及熱源自身的價(jià)格、質(zhì)量、體積、熱利用率等方面進(jìn)行綜合考慮。首先,設(shè)置預(yù)加熱區(qū),可顯著縮短主加熱所需時(shí)間,提高纖維鋪放速率,同時(shí),可避免鋪層嚙合點(diǎn)處溫度梯度變化過(guò)大而引起過(guò)多的殘余應(yīng)力。預(yù)加熱時(shí),為保持基體材料原有的物理化學(xué)性質(zhì)及最大限度提高鋪放速率,預(yù)加熱溫度通常應(yīng)略低于基體材料玻璃轉(zhuǎn)化溫度,因此,預(yù)加熱熱源的加熱溫度選擇應(yīng)略高于基體材料玻璃轉(zhuǎn)化溫度[4-5]。在主加熱區(qū),基體材料的安全加熱溫度通常應(yīng)低于基體材料的退化溫度,為使基體材料充分熔融,主加熱區(qū)的溫度又應(yīng)高于基體材料的玻璃轉(zhuǎn)化溫度,同時(shí),考慮鋪放效率,選擇主加熱區(qū)熱源的加熱溫度略高于基體材料退化溫度是較為合理的。其次,熱源使用場(chǎng)所空間的大小及安裝的難易程度,在熱源選擇過(guò)程中也需要充分的考慮。
目前,無(wú)論是工業(yè)上使用的預(yù)浸絲或預(yù)浸帶,其厚度都小于長(zhǎng)度或?qū)挾鹊?/10,因此,國(guó)外研究人員在進(jìn)行纖維鋪放加熱模型建立時(shí),通常根據(jù)熱力學(xué)第一定律,考慮熱量傳遞方向,建立一維或二維的熱傳遞模型[6-11]。同時(shí),根據(jù)熱源的不同,鋪放設(shè)備及周?chē)膶?shí)際環(huán)境,確定相應(yīng)的熱傳遞方式,建立熱傳遞模型的邊界條件。鑒于熱傳遞模型及其邊界條件的復(fù)雜性,多數(shù)情況采用有限元的方式對(duì)模型進(jìn)行數(shù)值求解,來(lái)研究不同時(shí)刻、溫度在纖維束中不同位置的分布情況以及時(shí)間、溫度、位置三者之間的關(guān)系,然后與試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,分析所建模型的合理性,同時(shí)對(duì)所建模型進(jìn)行合理修正。
自動(dòng)纖維鋪放過(guò)程中,在加熱溫度、加熱熱源、加熱模型三者確立之后,可以通過(guò)計(jì)算加熱時(shí)間確定的鋪放速率理論值范圍,指導(dǎo)實(shí)際鋪放過(guò)程鋪放參數(shù)的設(shè)定。
冷卻工藝研究
用于自動(dòng)纖維鋪放的碳纖維單向增強(qiáng)樹(shù)脂基預(yù)浸絲或預(yù)浸帶,其基體材料通常為半結(jié)晶聚合物。在這類(lèi)聚合物兼有無(wú)定形聚合物和結(jié)晶聚合物的優(yōu)點(diǎn),其使用溫度、抗蠕變性、硬度和強(qiáng)度主要受結(jié)晶度的影響,隨結(jié)晶度的增大而增大,但結(jié)晶度過(guò)高,又會(huì)使聚合物變脆[12-13]。因此,在實(shí)際應(yīng)用中,需嚴(yán)格控制半結(jié)晶聚合物成品的結(jié)晶度來(lái)保證產(chǎn)品質(zhì)量。在纖維鋪放過(guò)程,通常會(huì)設(shè)置特定的冷卻區(qū)對(duì)熔合后的鋪層進(jìn)行冷卻以完成其最終的結(jié)晶固化,而不是讓其在室溫條件下自然冷卻。
對(duì)于半結(jié)晶聚合物,結(jié)晶速率是材料結(jié)晶程度和結(jié)晶狀態(tài)的顯著影響因素,而冷卻速率及冷卻時(shí)間決定了結(jié)晶速率。因此,在纖維鋪放過(guò)程中,只要嚴(yán)格控制這個(gè)參數(shù),就可保證最終的產(chǎn)品品質(zhì)。而合理的冷卻速率主要是通過(guò)大量試驗(yàn)數(shù)據(jù)得到的。首先,基體材料性能最優(yōu)時(shí)所對(duì)應(yīng)的結(jié)晶度值的范圍可從材料制造廠商處得到;其次,設(shè)定具體的冷卻條件(等溫冷卻或以一定的冷卻速率冷卻),通過(guò)試驗(yàn)確定在此條件下的基體材料的結(jié)晶速率,結(jié)晶速率的測(cè)定方法通常有膨脹計(jì)法、光學(xué)解偏振法、DSC 法、熱臺(tái)偏光顯微鏡法、小角激光光散射法等[14] ;最后,通過(guò)仿真軟件,可計(jì)算出在此冷卻速率下達(dá)到要求結(jié)晶度所需的時(shí)間,即在纖維鋪放過(guò)程中,鋪層需在特殊冷卻區(qū)所停留的時(shí)間。
建立基體材料冷卻模型涉及傳熱學(xué)與結(jié)晶動(dòng)力學(xué)2 個(gè)學(xué)科的知識(shí)。冷卻模型的建立是將結(jié)晶動(dòng)力學(xué)模型與能量模型相耦合,通過(guò)設(shè)定溫度、材料的密度、黏度、熱傳導(dǎo)率、熱熔等物理參數(shù),同時(shí)設(shè)定符合實(shí)際情況的邊界條件,利用現(xiàn)有的多物理場(chǎng)仿真軟件(如COMSOL)得到達(dá)到某一結(jié)晶度的條件下冷卻速率與冷卻時(shí)間之間的關(guān)系。冷卻模型建立的關(guān)鍵是結(jié)晶動(dòng)力學(xué)模型的選擇,國(guó)外學(xué)者已經(jīng)對(duì)基于Avrami 方程的模型,基于Tobin 方程的模型及Ozawa模型進(jìn)行了較為深入的研究[15-16]。
在計(jì)算得到冷卻時(shí)間后,可以確定在這一區(qū)域合理鋪放速率理論值的范圍,但纖維鋪放過(guò)程中,鋪放速率只能是一個(gè)值,當(dāng)由加熱時(shí)間所計(jì)算的鋪放速率與由冷卻時(shí)間所計(jì)算的鋪放速率不能協(xié)調(diào)一致時(shí),可以通過(guò)調(diào)整加熱區(qū)間的長(zhǎng)度或特定冷卻區(qū)間的長(zhǎng)度來(lái)達(dá)到二者速率的一致。
纖鋪層間強(qiáng)度研究
利用自動(dòng)纖維鋪放技術(shù)加工的復(fù)合材料構(gòu)件,其基體材料的性能指標(biāo)由加熱工藝參數(shù)和冷卻工藝參數(shù)共同決定;其整體性能指標(biāo)還與鋪層間強(qiáng)度有關(guān),即與任意相鄰兩鋪層熔合后所能達(dá)到的鋪層間強(qiáng)度有關(guān)。鋪層間強(qiáng)度受到兩鋪層間緊密接觸程度、兩鋪層熔合時(shí)分子滲透距離及纖維鋪放壓力三方面因素的共同影響。
鋪層間緊密接觸度被定義為:在任意給定時(shí)間,兩鋪層接觸面積占鋪層面積總面積的百分比,與溫度、壓力、接觸時(shí)間有關(guān)[17]。由于表面粗糙度的原因,預(yù)浸絲或預(yù)浸帶表面與鋪層表面(或芯模表面)的微觀幾何形貌為不規(guī)則體,在未加熱和未施加壓力的條件下,預(yù)浸絲或預(yù)浸帶表面與鋪層表面(或芯模表面)不可能完全接觸。為理論計(jì)算方便,國(guó)外研究人員首先將不規(guī)則的微觀幾何體簡(jiǎn)化成大小不同的矩形(指截面),然后再將上述矩形簡(jiǎn)化成大小相同的矩形[18-20]。纖維鋪放過(guò)程中,在加熱到一定溫度時(shí),當(dāng)壓輥對(duì)預(yù)浸絲或預(yù)浸帶施加一定的鋪放壓力后,預(yù)浸絲或預(yù)浸帶與鋪層表面(或芯模表面)的突起的矩形將發(fā)生變形,矩形高度將減小,寬度將增大,然后根據(jù)這一模型,建立計(jì)算鋪放壓力與鋪層間緊密接觸度之間的函數(shù)關(guān)系。將現(xiàn)行的粗糙度評(píng)價(jià)指標(biāo)融入上述計(jì)算模型中,可顯著提高實(shí)際應(yīng)用的方便程度。圖2為鋪層表面微觀幾何形貌及簡(jiǎn)化模型示意圖。