碳纖維增強(qiáng)碳化硅陶瓷基復(fù)合材料具有密度低、高強(qiáng)度、高韌性和耐高溫等綜合性能,己得到世界各國高度重視。本文綜述了碳纖維的研究進(jìn)展,C,/S£復(fù)合材料的制備方法,并分析了各種制備方法的優(yōu)缺點(diǎn)。概述了C,/sc復(fù)合材料作為高溫?zé)峤Y(jié)構(gòu)材料和制動(dòng)材料的應(yīng)用狀況。最后,指出了有待解決的問題和今后的主要研究方向。
碳化硅陶瓷因具有高強(qiáng)度、高硬度、抗腐蝕、耐高溫和低密度而被廣泛用于高溫和某些苛刻的環(huán)境中,尤其在航空航天飛行器需要承受極高溫度的特殊部位具有很大的潛力。但是,陶瓷不具備像金屬那樣的塑性變形能力,在斷裂過程中除了產(chǎn)生新的斷裂表面吸收表面能以外,幾乎沒有其它吸收能量的機(jī)制。這就嚴(yán)重限制了其作為結(jié)構(gòu)材料的應(yīng)用。碳纖維具有比強(qiáng)度高、比模量大、高溫力學(xué)性能和熱性能良好等優(yōu)點(diǎn),在惰性氣氛中2000℃時(shí)仍能保持強(qiáng)度基本不下降。用碳纖維增強(qiáng)碳化硅復(fù)合材料。材料在斷裂的過程中通過纖維拔出、纖維橋聯(lián)、裂紋偏轉(zhuǎn)等增韌機(jī)制來消耗能量,使材料表現(xiàn)為非脆性斷裂。C,/S£復(fù)合材料綜合了碳纖維優(yōu)異的高溫性能和碳化硅基體高抗氧化性能,受到了世界各國的高度關(guān)注。并廣泛應(yīng)用在航空、航天、光學(xué)系統(tǒng)、交通工具(剎車片、閥)等領(lǐng)域。
碳纖維是有機(jī)纖維或?yàn)r青基材料經(jīng)碳化和石墨化處理后形成的含碳量在85%以上的碳素纖維。是20世紀(jì)50年代為滿足航空航天等尖端領(lǐng)域的需要而發(fā)展起來的一種特種纖維。目前,碳纖維的生產(chǎn)原料分為三大體系:聚丙烯腈基碳纖維、瀝青基碳纖維、粘膠基碳纖維。其中聚丙烯腈基碳纖維因其一系列優(yōu)勢(shì)居主導(dǎo)地位,粘膠基碳纖維由于生產(chǎn)率低、性能差等原因己逐步被淘汰,而瀝青基碳纖維由于原料資源豐富,含碳量高及碳化率高。成本低,正在被重視。聚丙烯腈基碳纖維是高強(qiáng)度碳纖維,瀝青基碳纖維則是高模量型。
雖然我國研制碳纖維已有30余年的歷史,但僅初步建立起工業(yè)雛形。生產(chǎn)的碳纖維質(zhì)量至今仍處于低水平。關(guān)鍵原因是碳纖維原絲質(zhì)量沒有過關(guān)。碳纖維的性能在很大程度上取決于原絲的質(zhì)量。原絲缺陷如表面橫向裂紋、橫向褶皺、軸向裂紋、皮芯結(jié)構(gòu)、表面沉積物、并絲等都會(huì)“遺傳”給碳纖維,使力學(xué)性能下降。因此。要想生產(chǎn)出質(zhì)量高且性能穩(wěn)定的碳纖維,今后必須加強(qiáng)對(duì)高性能碳纖維原絲的研究。
碳纖維與基體間存在一系列界面問題:如界面潤濕性差,化學(xué)、物理相容性差等,極大地影響著復(fù)合材料的力學(xué)性能,且碳纖維未經(jīng)表面處理前,其活性比表面積小(一般小于1 m2/g),表面能低,表面呈現(xiàn)出憎液性,限制了碳纖維高性能的發(fā)揮。為了提高碳纖維的表面化學(xué)活性,增強(qiáng)碳纖維表面與基體的結(jié)合能力,進(jìn)而提高復(fù)合材料的性能。對(duì)碳纖維進(jìn)行表面處理是很有必要的。目前。碳纖維表面改性處理主要有表面氧化處理、表面涂層處理、表面生長晶須等方法。在研究的諸多碳纖維表面處理方法中??諝庋趸ê唵?,耗時(shí)少,但操作彈性小,氧化反應(yīng)不易控制;液相氧化法主要是采用硝酸、酸性重鉻酸鉀、次氯酸鈉等強(qiáng)氧化性液體,對(duì)碳纖維表面進(jìn)行處理,處理比較溫和,不過耗時(shí)較長;電化學(xué)氧化法簡單易操作,處理?xiàng)l件溫和并易于控制。處理效果明顯。表面涂層處理是對(duì)碳纖維表面沉積一層無定形碳來提高其界面粘結(jié)性能,多采用氣相沉積技術(shù),操作較復(fù)雜,周期長。
王毅強(qiáng)等為了改善纖維與基體界面的結(jié)合狀態(tài)。研究了表面處理對(duì)C/S£單向復(fù)合材料力學(xué)性能的影響。結(jié)果表明,經(jīng)過1800℃處理后的纖維表面粗糙度變大。表面溝槽加深,復(fù)合材料的拉伸強(qiáng)度是未經(jīng)表面處理纖維復(fù)合材料拉伸強(qiáng)度的2 4倍:纖維表面沉積熱解炭后表面粗糙度減弱。其拉伸強(qiáng)度是未經(jīng)表面處理纖維復(fù)合材料的3 1倍;兩者聯(lián)合作用時(shí)纖維表面光滑,拉伸強(qiáng)度最高,達(dá)708MPa徐先鋒等對(duì)去膠聚丙烯腈炭纖維分別進(jìn)行不同時(shí)間的硝酸液相氧化處理,發(fā)現(xiàn)氧化處理會(huì)使纖維表面產(chǎn)生大量的孔洞,增加BET比表面積和BH累積孔體積,提高表面吸附能力:在氧化初期。伴隨著纖維表面大量活化點(diǎn)的迅速氧化,纖維表面微孔、中孔數(shù)量、表面粗糙度、比表面積和累積孔體積迅速增加,使纖維表面吸附能力大大增強(qiáng),但在氧化5mn以后,由于纖維表面尖銳突起處發(fā)生氧化,從而減少了纖維表面微孔。比表面積和累積孔體積降低。表面吸附能力減弱。
單一的表面處理常常在提高某方面性能的同時(shí),犧牲了另一方面的性能,而復(fù)合表面處理法則可適當(dāng)調(diào)和所采用的幾種表面處理方法的優(yōu)缺點(diǎn),必將成為今后碳纖維表面處理的主要研究方向。
資料下載: 碳纖維增強(qiáng)碳化硅陶瓷基復(fù)合材料的研究進(jìn)展及應(yīng)用.pdf